Analysis of spherical indentation of superelastic shape memory alloys

نویسندگان

  • Wenyi Yan
  • Qingping Sun
  • Xi-Qiao Feng
  • Linmao Qian
چکیده

Dimensional analysis and the finite element method are applied in this paper to study spherical indentation of superelastic shape memory alloys. The scaling relationships derived from dimensional analysis bridge the indentation response and the mechanical properties of a superelastic shape memory alloy. Several key variables of a superelastic indentation curve are revealed and examined. We prove that the bifurcation force in a superelastic indentation curve only relies on the forward transformation stress and the elastic properties of the initial austenite; and the return force in a superelastic indentation curve only relies on the reverse transformation stress and the elastic properties of the initial austenite. Furthermore, the dimensionless functions to determine the bifurcation force and the return force are proved to be identical. These results not only enhance our understanding of spherical indentation of superelastic shape memory alloys, but also provide the theoretical basis for developing a practicable method to calibrate the mechanical properties of a superelastic material from the spherical indentation test. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On anomalous depth-dependency of the hardness of NiTi shape memory alloys in spherical nanoindentation

An experimental study on the indentation hardness of NiTi shape memory alloys (SMAs) by using a spherical indenter tip and a finite element investigation to understand the experimental results are presented in this paper. It is shown that the spherical indentation hardness of NiTi SMAs increases with the indentation depth. The finding is contrary to the recent study on the hardness of NiTi SMAs...

متن کامل

Oliver–Pharr indentation method in determining elastic moduli of shape memory alloys—A phase transformable material

Instrumented indentation test has been extensively applied to study the mechanical properties such as elastic modulus of different materials. The Oliver–Pharr method to measure the elastic modulus from an indentation test was originally developed for single phase materials. During a spherical indentation test on shape memory alloys (SMAs), both austenite and martensite phases exist and evolve i...

متن کامل

The Effects of Laser Forming on NiTi Superelastic Shape Memory Alloys

This work focuses on application of the laser forming process to NiTi shape memory alloys. While all NiTi shape memory alloys exhibit both superelasticity and the shape memory effect, this study is restricted to a temperature range over which only the superelastic effect will be active. Specifically, this work addresses laser forming induced macroscopic bending deformations, postprocess residua...

متن کامل

The Effects of Laser Forming on Superelastic Niti Shape Memory Alloys

This work focuses on application of the laser forming process to NiTi shape memory alloys. While all NiTi shape memory alloys exhibit both superlasticity and the shape memory effect, this study is restricted to a temperature range over which only the superelastic effect will be active. Specifically, this work addresses laser forming induced macroscopic bending deformations, post process residua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006